The adaptor protein DCAF7 mediates the interaction of the adenovirus E1A oncoprotein with the protein kinases DYRK1A and HIPK2 Florian Glenewinkel¹, Michael J. Cohen², Cason R. King², Sophie Kaspar¹, Simone Bamberg-Lemper¹, Joe S. Mymryk², Walter Becker^{1*} 1 Institute of Pharmacology and Toxicology, RWTH Aachen University, Wendlingweg 2, 52074 Aachen, Germany 2 Departments of Microbiology & Immunology and Oncology, University of Western Ontario, London, Ontario, Canada ## **Supplementary figures:** - Fig. S1: Nuclear localization of wild type GFP-DYRK1A and GFP-DYRK1A-Δ93-104 - Fig. S2: Mapping of the DCAF7-interacting sequence in DYRK1A - Fig. S3: Co-IP of endogenous E1A and DCAF7 with GFP-HIPK2 - Fig. S4: In vitro assembly of the DYRK1A/DCAF7/E1A complex - Fig. S5: Co-IP of myc-E1A with GFP-DYRK1A deletion constructs - Fig. S6: Pulldown of DYRK1A deletion constructs by GST-E1A(X2) - Fig. S7: Phosphorylation of E1A(X2) by DYRK1A and HIPK2 in HeLa cells ### **Supplementary methods:** Cloning of Dictyostelium DYRK1 Vector for in vitro transcription and subsequent in vitro translation of DCAF7 Mammalian expression vectors for E1A Sources of previously described plasmids ## **Supplementary Figures** Figure S1: Nuclear localization of wild type GFP-DYRK1A and GFP-DYRK1A-Δ93-104 HeLa cells were transiently transfected to express wild type GFP-DYRK1A (WT) or GFP-DYRK1A-Δ93-104. GFP fusion proteins were detected by autofluorescence (GFP) and nuclei were stained with DAPI. Figure S2: Mapping of the DCAF7-interacting sequence in DYRK1A - A) Multiple residues in the DCAF7 binding region were mutated to define the contribution of these residues. The deletion mutant defective in DCAF7 binding ($\Delta 93$ -104, see Fig. 2) is shown for comparison. - **B**) Co-IP of FLAG-DCAF7 with GFP-DYRK1A mutants. GFP-DYRK1A₁₋₁₀₃ served as a positive control and GFP-DYRK1A-ΔN was used as a negative control. Figure S3: Co-IP of endogenous E1A and DCAF7 with GFP-HIPK2. HEK293 cells were transfected to overexpress GFP-HIPK2 or GFP and subjected to anti GFP immunoprecipitation. Bound proteins were detected by immunoblotting using antibodies directed against DCAF7, E1A and GFP. Figure S4: In vitro assembly of the DYRK1A/DCAF7/E1A complex - A) Outline of the experiment. The vector-encoded thrombin cleavage site was used to produce untagged prey protein from bacterially expressed GST-E1A-X2 or GST-E1A-X2Δ. Cell lysates of transiently transfected HeLa cells were used as the source for FLAG-DCAF7 (adaptor). The pulldown experiment was performed with bacterially expressed GST-DYRK1A that was immobilized to glutathione Sepharose as in Fig. 4e. - **B**) Western blot analysis. Binding of E1A-X2 to GST-DYRK1A depends on the presence of FLAG-DCAF7. Direct binding of E1A-X2 to GST-DYRK1A (second lane) does not exceed the non-specific background as revealed by pulldown with GST. Figure S5: Co-IP of myc-E1A with GFP-DYRK1A deletion constructs HeLa cells co-expressing myc-E1A, FLAG-DCAF7 and the indicated GFP-DYRK1A constructs were used for anti GFP IP. The recombinant proteins were detected be immunoblotting with antibodies directed against GFP, DCAF7 or the myc epitope. Figure S6: Pulldown of DYRK1A deletion constructs by GST-E1A-X2 HeLa cells were transfected to co-express FLAG-DCAF7 with GFP-DYRK1A deletion constructs as indicated. Cell lysates were subjected to GST-pulldown assay with immobilized GST-E1A-X2 or GST-E1A-X2Δ and bound proteins were analysed by immunoblotting. Figure S7: Phosphorylation of E1A(X2) by DYRK1A and HIPK2 in HeLa cells HeLa cells were co-transfected with expression plasmids for myc-E1A-X2 or myc-E1A-X2 Δ , FLAG-DCAF7 and GFP-DYRK1A, GFP-HIPK2 or empty GFP vector as indicated. Two days after transfection, Western blots of total lysates were analysed for phosphorylation of E1A. E1A-X2 Δ is a deletion mutant lacking the DCAF7 binding region (deletion of amino acids 255-270). ## **Supplementary Methods:** # Cloning of Dictyostelium DYRK1 To generate a mammalian expression vector for *Dictyostelium discoideum* DYRK1 (Uniprot Q76NV1), the segment of the gene encoding amino acids 1-40 was amplified from genomic DNA (kindly provided by Annette Müller-Taubenberger, Ludwig Maximilian University of München, Germany) and cloned into pEGFP-C1 using the following primers with engineered restriction sites: | ddDYRK1Afor | atggat AGATCT gcaaaatcaagaaatgatgcacc | (BgIII) | |-------------|--|-----------| | ddDYRK1Arev | gttgtt AAGCTT attgcttttttttttgctttggcagtg | (HindIII) | # Vector for in vitro transcription and subsequent in vitro translation of DCAF7 The coding sequence of hDCAF7 was inserted C-terminal of the reading frame for GFP in the vector pLEXSY_invitro_2 (Jena Bioscience, Jena, Germany) *via* engineered restriction sites in the PCR primers: | DCAF7for | acgac AAGCTT ctatgtccctgcacggc | (HindIII) | |----------|---|-----------| | DCAF7rev | atat GCGGCCGC ctacactctgagtatctccagg | (NotI) | ### Mammalian expression vector for E1A To construct vectors for mammalian expression of myc-E1A (289 amino acid form), myc-E1A-X2 (containing only exon 2) and the deletion mutant myc-E1A($X2\Delta$) (deletion of amino acids 255-270), inserts were ligated in frame with the myc epitope tag present in pCANmyc. ### Previously described plasmids All other expression vectors and their mutated versions are listed in table S1. **Table S1: Sources of the expression plasmids** | Expressed protein | Species | Variants | Reference | |-------------------|----------------|---|--------------------------| | GFP-rDYRK1A | rat | WT, 1-103, 1-176 | Becker et al. 1998 | | GFP-rDYRK1A | rat | K188R | Himpel et al. 2001 | | GFP-rDYRK1A | rat | Δ1-135, Δ93-104, 77-
158, 77-113, 77-136,
alanine mutants | this work | | FLAG-mDYRK1A | mouse | WT | Sitz et al. 2008 | | HA-rDYRK1A | rat | WT | Kentrup et al. 1996 | | GST-DYRK1A | rat | WT, ΔC | Himpel et al. 2001 | | GFP-hDYRK1B | human | WT (p69) | Leder et al. 2003 | | hDYRK1B | human | WT (p69) | Leder et al. 2003 | | xDYRK1B | Xenopus laevis | WT | Lilienthal et al. 2010 | | GFP-hHIPK1 | mouse | WT | Kim et al. 1998 | | GFP-hHIPK2 | human | WT | Hofmann et al. 2002 | | GFP-hHIPK2 | human | D243N | van der Laden et al 2015 | | GFP-hHIPK2 | human | T125P, 1-114, 1-135 | this work | | GFP-zDCAF7 | zebrafish | WT | Nissen et al. 2006 | | FLAG-hDCAF7 | human | WT | Ritterhoff et al. 2010 | | GFP-E1A | HAdV-5 | WT, R262/263E | Cohen et al. 2013 | | GST-E1A-X2 | HAdV-5 | WT, Δ255-270 | Avvakumov et al. 2002 | | E1A | HAdV-5 | 12S | Rasti et al. 2005 | #### References - Avvakumov, N., Sahbegovic, M., Zhang, Z., Shuen, M. & Mymryk, J.S. Analysis of DNA binding by the adenovirus type 5 E1A oncoprotein. *J. Gen. Virol.* **83**, 517-24 (2002). - Becker, W., Weber, Y., Wetzel, K., Eirmbter, K., Tejedor, F.J. & Joost, H.G. Sequence characteristics, subcellular localization, and substrate specificity of DYRK-related kinases, a novel family of dual specificity protein kinases. *J. Biol. Chem.* **273**, 25893-902 (1998). - Cohen, M.J., Yousef, A.F., Massimi, P., Fonseca, G.J., Todorovic, B., Pelka, P., Turnell, A.S., Banks, L. & Mymryk, J.S. Dissection of the C-terminal region of E1A redefines the roles of CtBP and other cellular targets in oncogenic transformation. *J. Virol.* **87**, 10348-55 (2013). - Himpel, S., Panzer, P., Eirmbter, K., Czajkowska, H., Sayed, M., Packman, L.C., Blundell, T., Kentrup, H., Grötzinger, J., Joost, H.G. & Becker, W. Identification of the autophosphorylation sites and characterization of their effects in the protein kinase DYRK1A. *Biochem. J.* 359, 497–505 (2001). - Hofmann, T.G., Möller, A., Sirma, H., Zentgraf, H., Taya, Y., Dröge, W., Will, H. & Schmitz, M.L. Regulation of p53 activity by its interaction with homeodomain-interacting protein kinase-2. *Nat. Cell Biol.* **4**, 1–10 (2002). - Kentrup, H., Becker, W., Heukelbach, J., Wilmes, A., Schürmann, A., Huppertz, C., Kainulainen, H. & Joost, H.G. Dyrk, a dual specificity protein kinase with unique structural features whose activity is dependent on tyrosine residues between subdomains VII and VIII. *J. Biol. Chem.* **271**, 3488-95 (1996). - Kim, Y.H., Choi, C.Y., Lee, S.J., Conti, M.A. & Kim, Y. Homeodomain-interacting protein kinases, a novel family of co-repressors for homeodomain transcription factors. *J Biol Chem.* **273**, 25875–9 (1998). - Leder, S., Czajkowska, H., Maenz, B., de Graaf, K., Barthel, A., Joost, H.G. & Becker, W. Alternative splicing variants of dual specificity tyrosine phosphorylated and regulated kinase 1B exhibit distinct patterns of expression and functional properties. *Biochem. J.* **372**, 881-8 (2003). - Lilienthal, E., Kolanowski, K. & Becker, W. Development of a sensitive non-radioactive protein kinase assay and its application for detecting DYRK activity in Xenopus laevis oocytes. *BMC Biochem.* **11**, 20 (2010). - Nissen, R.M., Amsterdam, A. & Hopkins, N. A zebrafish screen for craniofacial mutants identifies wdr68 as a highly conserved gene required for endothelin-1 expression. *BMC Dev. Biol.* **6**, 28 (2006). - Rasti, M., Grand, R.J., Mymryk, J.S., Gallimore, P.H. & Turnell, A.S. Recruitment of CBP/p300, TATA-binding protein, and S8 to distinct regions at the N terminus of adenovirus E1A. *J. Virol.* **79**, 5594-605 (2005). - Ritterhoff, S., Farah, C.M., Grabitzki, J., Lochnit, G., Skurat, A.V. & Schmitz, M.L. The WD40-repeat protein Han11 functions as a scaffold protein to control HIPK2 and MEKK1 kinase functions. *EMBO J.* **29**, 3750-61 (2010). - Sitz, J.H., Baumgärtel, K., Hämmerle, B., Papadopoulos, C., Hekerman, P., Tejedor, F.J., Becker, W.& Lutz, B. The Down syndrome candidate dual-specificity tyrosine phosphorylation-regulated kinase 1A phosphorylates the neurodegeneration-related septin 4. *Neuroscience* **157**, 596-605 (2008). - van der Laden, J., Soppa, U. & Becker W. Effect of tyrosine autophosphorylation on catalytic activity and subcellular localisation of homeodomain-interacting protein kinases (HIPK). *Cell Commun. Signal.* **13,** 3 (2015).